Matls. I.M. 375

****GENERAL REWRITE****

METHOD OF TEST FLOW OF GROUT MIXTURES (FLOW CONE METHODS)

SCOPE

This method of test covers the procedure to be used both in the laboratory and in the field for determining the flow of grout mixtures by measuring the time of efflux of a specified volume of grout from a standardized flow cone.

The procedure is a modification of Corp. of Engineers Method CRD-C611-80.

APPARATUS

- 1. Flow cone as specified in the Corp. of Engineers Method CRD-C611-80
- 2. Stopwatch accurate and readable to 0.2 seconds
- 3. Level
- 4. Calibration jug or container to hold a quantity of water equal to 1725 mL (2 qt.)

CALIBRATION OF CONE

- 1. The flow cone shall be firmly mounted in such a manner that the top will be level and the cone free from vibration (use level, rigid, horizontal surface).
- 2. Level the cone by adjusting the mounting forks.
- 3. Close the discharge tube of the cone by placing a finger over the lower end. (Be sure not to disturb the leveled cone.)
- 4. Introduce 1725 ± 1 mL of water into the cone.
- 5. Adjust the pointer so that the point just comes into contact with the water.

SAMPLE

The test sample shall consist of 1725 ± 1 mL of grout.

PROCEDURE

- 1. Moisten the inside surface of the flow cone.
- 2. Place a finger over the discharge opening.
- 3. Introduce grout into the cone until the grout surface rises into contact with the pointer.
- 4. Start the stopwatch and remove the finger simultaneously.
- 5. Stop the stopwatch at the first break in the continuous flow of grout from the discharge opening (when the cone is essentially empty).
- 6. Read time of efflux of the grout (which is the time indicated by the stopwatch).
 - **NOTE 1:** If there is a break in the continuity of discharge prior to essential emptying of the cone, it is an indication that the grout is too thick to be properly tested for flow.
 - **NOTE 2:** If the sand used in the grout mixture is larger than 4.75 mm (No. 4) in size, then the sample should be sieved through a 4.75 mm (No. 4) sieve cloth prior to being introduced to the flow cone.

REPORT – (See Figure 1 for an Example.)

- 1. Average time of efflux to the nearest second.
- 2. Composition of the sample
- 3. Information and observation of the physical characteristics of the sample

FIGURE 1

CENTRAL IOWA TRANSPORTATION CENTER LAB FLOWABLE MORTAR

LAB NUMBER:1AS4:008

PROJECT NUMBER:

CONTRACT NUMBER:

COUNTY: POLK

DESIGN:

CONTRACTOR:

MATERIAL: FINE SAND

SOURCE: HALLETT-JOHNSTON UNIT OF MATERIAL: CEMENT-LAFARGE, FLYASH-COUNCIL BLUFFS

QUANTITY: 50 LB BAG PRODUCER: GNA CONCRETE

SAMPLED BY:

SENDER'S NUMBER:

DATE SAMPLED: 5/12/94 DATE RECEIVED: 5/12/94 DATED REPORTED: 5/14/94

SIEVE	PERCENT
SIZE	PASSING
3/8"	100
#4	99
# 8	92
#16	78
#30	44
# 50	8.2
#100	0.9
#200	0.5

DISPOSITION: COMPLIES WITH THE FOLLOWING PROPORTIONS: 400 LBS FLYASH, 100 LBS CEMENT, 2600 LBS SAND. FLOWABILITY OF 16.10 SEC OBTAINED WITH 68 GAL/YD3 H20.

COPIES: CENTRAL IOWA TRANSPORTATION CENTER

CENTRAL IOWA TRANSPORTATION CENTER LAB

MATERIALS

/G. BEGG

-C NAROTAM

construction

✓GNA CONCRETE

SIGNED: R. F. MUMM, P.E. MATERIALS ENGINEER